A pure L1L1-norm principal component analysis

نویسندگان

  • J. Paul Brooks
  • José H. Dulá
  • Edward L. Boone
چکیده

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes that recast PCA as an optimization problem involving the L1 norm, none provide globally optimal solutions in polynomial time. This paper proposes an L1-norm PCA procedure based on the efficient calculation of the optimal solution of the L1-norm best-fit hyperplane problem. We present a procedure called L1-PCA* based on the application of this idea that fits data to subspaces of successively smaller dimension. The procedure is implemented and tested on a diverse problem suite. Our tests show that L1-PCA* is the indicated procedure in the presence of unbalanced outlier contamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of sample and population Hilbertian functional principal components

In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...

متن کامل

L1-norm-based (2D)PCA

Traditional bidirectional two-dimension (2D) principal component analysis ((2D)PCA-L2) is sensitive to outliers because its objective function is the least squares criterion based on L2-norm. This paper proposes a simple but effective L1-norm-based bidirectional 2D principal component analysis ((2D)PCA-L1), which jointly takes advantage of the merits of bidirectional 2D subspace learning and L1...

متن کامل

Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization

Principal Component Analysis (PCA) is one of the most important methods to handle highdimensional data. However, the high computational complexitymakes it hard to apply to the large scale data with high dimensionality, and the used 2-norm makes it sensitive to outliers. A recent work proposed principal component analysis based on 1-normmaximization, which is efficient and robust to outliers. In...

متن کامل

Non-Greedy L21-Norm Maximization for Principal Component Analysis

Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle highdimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational statistics & data analysis

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013